04.03.2014 09:47

suceciones matematicas

Una sucesión matemática es un conjunto ordenado de objetos matemáticos, generalmente números. Cada uno de ellos es denominado término(también elemento o miembro) de la sucesión y al número de elementos ordenados (posiblemente infinitos) se le denomina la longitud de la sucesión. No debe confundirse con una serie matemática, que es la suma de los términos de una sucesión.

A diferencia de un conjunto, el orden en que aparecen los términos sí es relevante y un mismo término puede aparecer en más de una posición. De manera formal, una sucesión puede definirse como una función sobre el conjunto de los números naturales (o un subconjunto del mismo) y es por tanto una función discreta.

.

Un ejemplo de sucesión sería este

X1 = 1
X2 = 3
X3 = 5
.....
siendo el término n-ésimo:
Xn = 2·n - 1

Esta sucesión representa a los números impares. A simple vista se puede ver que desde el punto de vista de la notación, la sucesión presenta una enorme ventaja. Permite expresar infinitos números en una expresión muy corta. En el caso del ejemplo anterior:

f(n) = 2·n - 1

Si sustituimos el término n por cualquier valor natural obtenemos automáticamente el término correspondiente de la sucesión. Como sucede con otras herramientas, como las matrices, la sucesión permite abreviar notablemente las expresiones y ahorrar en cálculos.

Las aplicaciones de las sucesiones son incontables. Se utilizan abundantemente para demostrar los teoremas y las propiedades de la topología matemática, y en la muy conocida demostración del número pi, pero dado que esta parte del cálculo es la más inocua, son mucho más destacadas sus aplicaciones en materia de cálculo numérico.

Las series numéricas son la suma de los términos de una sucesión y la materia más densa de la primera parte de la asignatura cálculo del primer curso de cualquier carrera técnica. Existen varios tipos de series en función de la naturaleza de la sucesión que las conforma, que pueden ser aritméticas, geométricas, basadas en funciones trigonométricas, logarítmicas, exponenciales, etcétera... Pues calcular la suma de términos de las sucesiones es de aplicación para calcular el error máximo que obtenemos al realizar una operación por un método de cálculo numérico iterativo.

Bajaré a la tierra por un momento. Imaginemos esta sucesión, de tipo geométrico, definida de forma implícita:

Xn = X(n-1) / 2,
con X1=1
y donde X(n-1) es el término anterior a Xn


Cada término es la mitad del término anterior

Xn = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128....

Se puede demostrar mediante la teoría de series que cada término es igual a la suma de todos los siguientes. Por lo tanto, si calculamos "a groso modo" una suma de números de este tipo sumando los términos uno a uno, podemos acotar el error que se produce, que puede ser todo lo pequeño que queramos a costa de invertir más tiempo sumando números. Si queremos que el error sea menor del 1% bastaría con sumar todos los términos hasta que llegar a un término inferior a 1/100, concretamente los 8 primeros del ejemplo expuesto. Esta es la forma concreta en la que "piensa" y resuelve los problemas complejos (integración, resolución de sistemas) una calculadora o un ordenador.

Imaginemos que le damos la vuelta a la sucesión y trabajamos con:

Xn = X(n-1) · 2
X1 = 1

Xn = 1, 2, 4, 8, 16, 32, 64, 128,....

Aquí, del mismo modo, cada término es igual a la suma de todos los números situados a la izquierda más el primer término. Por definición de sucesión cada término debe de ser inequívoco y por lo tanto el primer término debe de ser una constante. Si el primer término fuese infinitamente pequeño (infinitésimo), para los efectos sí que se daría como en el caso anterior que cada término es igual al caso anterior. Por tanto, si en un juego de apuestas en el que el payoff es igual al riesgo y la cantidad inicial es un número cualquiera de esta sucesión, si cada vez que perdiésemos volviésemos a jugar la cantidad del siguiente número de la sucesión hasta ganar, y suponiendo que no sufrimos una cantidad infinita de derrotas, nuestro beneficio sería siempre el mismo y exactamente igual a la primera cantidad apostada.

—————

Volver


Contacto

marinela arias